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It has long been clear that the brain represents sensory, motor and 
internal variables in distributed codes across large populations of 
neurons. In turn, theoretical models of neural computation have 

emphasized that circuit dynamics must be understood in terms of 
the emergence of simple structures from the collective interactions 
of large numbers of neurons1–5, and that robust representation and 
memory involve the formation of low-dimensional stable states in 
population dynamics (called ‘attractors’)1–5.

Until recently, experimental techniques permitted access to only a 
few neurons at a time, but simultaneous recordings of multiple neu-
rons are allowing the theoretically suggested approach of character-
izing the structure and dynamics of neural responses at the population 
level. This approach has been illustrated in recent demonstrations of 
low-dimensional trajectories in sensory and motor circuits6–8.

Our work proceeds from four central premises. (1) In distrib-
uted codes, information representation, computation and dynam-
ics unfold at the level of the neural population, and the collective 
states across neurons of a circuit are the natural way to understand 
them. (2) If the primary role of a circuit is to represent a low-dimen-
sional variable of a given dimension and topology, then, by defini-
tion, the high-dimensional states of the circuit will be localized to 
a low-dimensional subspace or ‘manifold’ of matching dimension 
and topology. (3) Characterizing the structure of this manifold can 
enable the unsupervised discovery and decoding of the internally 
coded (latent) variable. (4) Examining the manifold structure and 
dynamics on and off the manifold across a range of behavioral states 
as circuit inputs change can reveal inherently stable states and thus 
aspects of the circuit mechanism.

We illustrate a method to characterize the manifold struc-
ture of data. We use this characterization to discover—in a blind 

or unsupervised way—low-dimensional internal states, provide 
blind time-resolved decoding of these states and support the pre-
dictions of a classical mechanistic circuit model using the mam-
malian head-direction (HD) system as our subject. The HD system 
in mammals and insects9–15 is a cognitive circuit that uses external 
and internal cues to estimate the direction that the animal is head-
ing with respect to the external world. It is a proving ground for 
the manifold-based approach to the unsupervised discovery of 
encoded variables because it represents an internal cognitive state 
that need not directly reflect externally measured variables during 
waking. Moreover, this dissociation between internal and external 
states holds even truer during sleep (as we will see). Simultaneously, 
the HD system illustrates how a manifold approach can yield new 
insights into the structure, dynamics and mechanisms of a long-
studied neural circuit, which were impossible to achieve from char-
acterizing the responses of a few neurons at a time.

Two decades ago, theoretical models4,16,17 of the HD circuit pos-
tulated a stable, one-dimensional (1D) ring-shaped manifold in the 
high-dimensional population activity state space, which is a more 
abstract and fundamental feature than details about shapes of tun-
ing curves, connectivity profiles or physical placements of neurons. 
Stability means that perturbations in the high-dimensional space 
away from the ring should quickly and preferentially flow back to 
the ring. If the HD circuit is an integrator, then the input to the 
circuit describes the momentary change in state rather than explic-
itly specifying the new state; the circuit adds these changes to the 
existing state to produce the new state. This integration requires 
that changes in state along the ring for equivalent changes in a rep-
resented variable should be equal. HD circuit models have been 
extended to explain the dynamics of other neurons5. The same 
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models can further explain how the brain could form representa-
tions in more abstract metric spaces and update them by integrating 
a signal that encodes changes in the representation18. Thus, testing 
whether these models correctly describe the circuit mechanism is of 
broad importance.

So far, pairwise correlations between mammalian HD cells11,19–21 
and the discovery of a topographically ordered physical HD-coding 
ring in flies13,14 are consistent with hypothesized models. Here, 
we show that the long-hypothesized low-dimensional state-space 
ring structure and attractive dynamics can be directly visualized 
in the population response manifold of the mammalian HD sys-
tem, whether or not the circuit possesses physical topography that 
reflects its connectivity and function. The dynamics revealed in this 
circuit during sleep states provide new evidence about the intrinsic 
mechanisms that allow these states to be maintained and updated.

Portions of these results have been presented at conferences22.

Results
The instantaneous (temporally binned) response of N neurons is a 
point in an N-dimensional state space where each axis represents 
the activity of one neuron (Fig. 1a). The collection of snapshots of 
the population activity forms a cloud in state space. If the popu-
lation encodes some variable of dimension ≪D Nm  and a certain 
topology, the point cloud should trace out a manifold of the same 
dimension and topology, although the shape may be convoluted. In 
the following sections, we describe how characterizing the topol-
ogy and structure of the manifold, then analyzing dynamics on the 
manifold, can permit us to extract latent encoded variables in an 
unsupervised way and deduce key aspects of the circuit mechanism.

Spline parameterization for unsupervised decoding (SPUD). To 
decode the internal state encoded by the manifold, we performed 
the following steps (details in Methods). (1) Consider binned spik-
ing data as points in a high-dimensional state space (Fig. 1a). (2) 
Determine the topology of the point cloud using persistent homol-
ogy23 (Fig. 1b,c), with the introduction of a neighborhood-thresh-
olded topological data analysis (nt-TDA) method (Supplementary 
Note 2.3) for increased robustness to noisy data. (3) Estimate the 
intrinsic manifold dimension using various methods, including 
correlation dimension24 (Supplementary Fig. 11). (4) Fit the mani-
fold with a spline of matching topology and dimension (Fig. 1d). 
(5) Parameterize the spline by a smoothly changing variable of 
matching dimension and topology (Fig. 1e). Steps 4 and 5 yield a 
local, on-manifold, minimal-dimensional parameterization of even 
topologically nontrivial manifolds; the resulting parameterization is 
interpreted as the values of the encoded latent variable or internal 
state. (6) Given a population state at any moment, we decode that 
state by projecting it to the nearest point on the spline; the param-
eterization value at that point is the unsupervised estimate of the 
value of the encoded latent variable (Fig. 1f). None of these steps 
requires, in principle, a global low-dimensional embedding of the 
data.

To characterize the global topology of the manifold (step 2), 
we used persistent homology23. The method starts by blurring the 
point cloud of data at different resolutions or scales. Then, at each 
resolution, we examined the emergence of connected groups of data 
points called simplicial complexes (Fig. 1b,c). A simplicial complex 
can contain certain structures, such as a ring or a torus, and so on. 
Betti numbers form a list of binary structural designations that char-
acterize the complexes (Fig. 1b). In noisy data, if a Betti number for 
a structure persists over many scales (Fig. 1c), this feature is robust 
and deemed significant. Topological data analysis uses these Betti 
numbers, across scales, to characterize the structure of a dataset23.

Our method fundamentally deals with determining the exis-
tence of a nontrivial topological structure in the data manifold, then 
defining local on-manifold coordinate systems to parameterize it.  

Conventional dimensionality reduction methods (including prin-
cipal component analysis (PCA), Isomap, locally linear embedding 
and t-distributed stochastic neighbor embedding), by contrast, 
assume that the manifold is topologically trivial (equivalent to a 
stretched, folded or crumpled hole-free plane or solid ball of some 
dimension, or disjoint sets of these; Fig. 1b, first two panels), and 
find a low-dimensional global space or coordinate system to embed 
all the data. When the manifold is topologically nontrivial (Fig. 
1b, third panel onwards), global dimensionality reduction meth-
ods will typically fail to correctly parameterize the latent variable 
represented on the manifold, thus giving a higher-dimensional 
embedding and parameterization than the manifold dimension. 
For instance, the minimum global embedding dimension for a 1D 
ring is two-dimensional (2D), thus global dimensionality reduction 
will yield, at best, a 2D parameterization of a 1D circular variable 
and fail to discover the real 1D latent variable (see the extended 
discussion and schematic in Supplementary Note 1). Constructing 
low-dimensional global embeddings is neither sufficient nor actu-
ally necessary for spline parameterization for unsupervised decod-
ing (SPUD) (we used an optional initial dimensionality reduction 
step to reduce the complexity of subsequent operations and pos-
sibly for some smoothing of the manifold for undersampled datas-
ets, but this step was not necessary, and applying SPUD directly in 
higher dimensions led to better fits when there was enough data; 
Supplementary Fig. 4).

Ring manifold and unsupervised decoding. We applied SPUD to 
activity recorded from the anterodorsal thalamic nucleus (ADn) 
of mice that were awake and foraging in an open 2D environment 
along variable paths, as well as intervening rapid eye movement 
(REM) and non-REM (nREM) periods21. The behavior, even after 
reduction to abstract coordinates on a 2D plane, was at least five-
dimensional (location, orientation, linear speed and angular speed); 
the actual behaviors and inputs across sensory modalities are much 
higher-dimensional.

We included all recorded thalamic cells, without subselec-
tion based on tuning or other criteria, using binned spike counts 
throughout (~100-ms resolution). With larger, simultaneously 
recorded populations, it will become possible to perform higher 
temporal resolution decoding; doing so with 5–10 ms of precision 
would allow us to probe fast dynamics and resolve information that 
may be encoded in shorter-timescale spike patterns25.

To determine whether the data exhibit a low-dimensional mani-
fold structure in state space, we used both direct visualization of 
nonlinear low-dimensional embedding from the high-dimensional 
state space and topological data analysis, in particular the persistent 
homology of simplicial complexes23 (topological methods are more 
general because they permit the characterization of topologically 
nontrivial and higher-dimensional manifolds, even when direct 
visualization is not possible). Both methods revealed that network 
states during waking exploration lie on a strikingly low-dimen-
sional, albeit highly nonlinear, manifold in the form of a convoluted 
ring (Fig. 2a,b; see Supplementary Fig. 1 for data for all seven ani-
mals and Supplementary Video 1 for a 3D view). Moreover persis-
tent homology revealed no evidence of a toroidal or more complex 
topological structure (Fig. 2b, H2 plot; contrast with Supplementary 
Fig. 3). The 1D structure is of much lower dimensionality than the 
behavior or the sensory inputs.

With the confirmation of a ring topology, we fitted a nonlinear 
spline with the same topology to the manifold (Fig. 2c) and iso-
metrically parameterized the spline along its length with a circu-
lar variable α, whose values are indicated by the color of the spline  
(Fig. 2d). Now, α is the unsupervised or SPUD estimate of the latent 
variable encoded by the population manifold. Points on the mani-
fold are colored according to the nearest value of the latent variable 
estimate (LVE), α (Fig. 2e).
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The LVE very closely matches (up to an arbitrary choice 
of origin and direction) the directly measured head angle  
(Fig. 2f,g; see Supplementary Figs. 4–6 for data for the other ani-
mals). Moreover, regressing the firing rates of individual cells 
onto the LVE recovered neural tuning curves in a fully blind way  
(Fig. 2h). The match is a direct validation of the hypothesis that 
the topology of neural representations should match the topology 
of the represented variables.

Isometric parameterization along the neural manifold produces 
excellent decoding. This was not clear a  priori, and implies that 
equal amounts of neural code length or population activity varia-
tion are devoted to equal changes in the head angle. This isometry 
property is exactly consistent with expectations for an accurate head 
velocity integrator, in which coding states must be equivalently 
changeable so that a unit velocity input produces a unit change in 
the represented angle, regardless of the starting state.

The unsupervised LVE better matches an internal state esti-
mate constructed from a supervised (tuning-curve-based) decoder  
(Fig. 2g; Supplementary Fig. 5) and explains more of the variance of 
neural spiking (cross-validated; Fig. 2i and Supplementary Fig. 6) 
than the measured HD. Thus, the LVE more accurately tracks the 
internal representation of an animal than the measured HD. The 
internal representation may differ from the measured HD for vari-
ous reasons, including the possibility that the animal is representing 

an inaccurate HD estimate, or past or future HD states, or because 
of errors in the experimental HD measurement.

A natural question that arises is whether the neurons encode 
additional undiscovered variables. The manifold is clearly primar-
ily 1D, but we can ask whether there is additional structure, for 
example, in the thickness of the ring. With a finite signal-to-noise 
ratio (SNR) in the dataset, it is impossible to exclude structures that 
are significantly smaller than the noise. We thus searched for addi-
tional coding structures down to the noise floor by asking whether 
the data exhibit either a spread or structure that is not explained 
by the 1D ring structure with independent spiking noise. First, we 
generated synthetic data based only on tuning curves for the 1D 
LVE, with spikes generated using an independent point process per 
cell with data-matched dispersion (Fano factor). The resulting point 
cloud closely matched the data (Fig. 2j). Second, shared angular 
coding around the ring manifold accounted for 94% of the covaria-
tion between neurons. Third, the residual covariance after remov-
ing tuning to the LVE exhibited little discernible structure (Fig. 2k). 
By contrast, there were additional coding dimensions in postsubic-
ular HD cells (which code for head velocity and behavioral state; 
data not shown) and in the ADn during nREM sleep (shown later). 
Larger numbers of simultaneously recorded cells will improve the 
SNR, thus allowing the discovery of a finer additional structure or 
further downgrading the possibility that it exists.
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Fig. 1 | Population activity as a manifold and a method for manifold characterization. a, Each blue point is a vector representing instantaneous activity 
in the neural population: the vector component (ri) is the activity of the ith neuron. The points form a manifold. b, Six sample manifolds, with their Betti 
0, 1 and 2 numbers listed underneath. Betti 0 indicates the number of connected components that form the manifold (contrast the first and second 
manifolds), Betti 1 indicates the number of 1D holes in the manifold (contrast the third and fourth manifolds), and Betti 2 indicates the number of 2D holes 
or voids (the sphere and torus both enclose a single 2D void). c, Persistent homology was used to determine the topology of the manifold underlying 
the noisy point cloud data. Balls of different sizes centered on the data points represent different simplicial radii (r) or scales. At a given radius (scale), 
sets of connected points form simplicial complexes (see Supplementary Note 2.2 for details). Each complex is characterized by a set of features, with 
accompanying Betti numbers (illustrated in b). Persistent homology tracks these across scales. Depicted here are the ring features of the simplicial 
complexes (colored rings). The upper middle panel shows rings appearing, which then disappear (are filled in, upper right panel). The upper right panel 
shows that another ring (yellow) appears, which persists until the last (lower middle panel); it is deemed significant because of its persistence. The inset 
shows the Betti 1 barcode, or the range of radii over which each ring feature persists (different ring in each row). d, The data manifold is fit by a spline 
(cyan line) of dimension and topology as determined in a–c. The spline uses a few anchor points (cyan circles) determined by clustering methods, with 
connecting polynomial curves. e, The spline is parameterized by assigning coordinates along its length. The coordinates represent the values of an internal 
(latent) state that the circuit is assumed to encode. f, Moment-by-moment decoding of the internal state is done by reading out the parameterization 
value at the point on the spline closest to the data point (red shows the sample decoded point).
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In summary, down to the noise floor (SNR) of the present data, 
and if the recorded cells are representative samples, the popula-
tion manifold reveals that the several thousand neuron-sized ADn 
population collectively encodes a single 1D variable, and no other, 
during waking.

The manifold is autonomously generated and attractive. We 
next show how the manifold perspective directly reveals the col-
lective intrinsic dynamics of the circuit. These analyses test the 
key predictions1,3–5 of continuous attractor models (properties 1, 
3–5) and models of neural integrators for continuous variables 
(properties 1–6; Fig. 3a; see Supplementary Fig. 10 for a network 
model). (1) The high-dimensional network response occupies a 
low-dimensional continuum of states with a dimension and topol-
ogy matching the encoded variable (or variables). (2) There is isom-
etry of encoded state intervals so that equal velocity inputs produce  
equal changes in the encoded state, regardless of the starting state. 

(3) States are autonomously generated and stabilized, and capable 
of self-sustained activation when sensory inputs are removed. (4) 
The manifold is an attractor, whereby states initialized away from 
the manifold rapidly flow back. (5) Manifold states are energetically 
equal, with no net flow along the manifold. (6) A velocity input, 
encoding the time-derivative of the represented variable, drives the 
circuit in a special direction in the high-dimensional state space, 
specifically along the low-dimensional manifold. These predictions 
are fundamentally applied in terms of the population manifold and 
hence most naturally tested at that level.

The results presented above directly support properties 1 and 2, 
which alone are not sufficient for establishing continuous attractor 
dynamics. To study autonomous dynamics, we examined the cir-
cuit during sleep, in the absence of spatial or directional input from  
the world.

During REM sleep, states again lie on a 1D ring (Fig. 3b; 
Supplementary Video 2; see also Supplementary Note 2.3 for a new 
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Fig. 2 | Unsupervised discovery and time-resolved decoding of encoded variables through manifold characterization. Throughout this figure, θ 
represents the direct measurement of the head orientation of the animal from light-emitting diode tracking, ̂θ represents the supervised decoder’s 
estimate of the brain’s representation (using tuning curves), and α represents the unsupervised latent variable estimate. This figure shows ADn data 
from a single animal for a full waking episode (31-min interval). a, Visualization of the manifold (using Isomap43), with every alternate pair of temporally 
adjacent points connected. The inset shows a point cloud (upper) and an alternative view of the manifold (lower). Note that the manifold does not occupy 
a very low-dimensional linear subspace, and PCA often fails to extract a ring structure (Supplementary Fig. 2). b, Betti 0, 1 and 2 barcodes. Each row shows 
a different feature. Simplicial complex radii are shown on the abscissa (schematic is shown at the top of the chart: complexes were constructed from 
data at different radii). The start and end of a horizontal bar in the middle plot signals the appearance and disappearance of some ring (a non-zero Betti 1 
feature) in the data at the corresponding radii. The long bar represents a ring that appears at ~16 Hz  and persists until ~43 Hz  ( Hz  because of variance 
stabilization; see Methods). c, Spline fit to the point cloud. d, Parameterization of the spline by coordinate α (arbitrary origin). e, Coloring of neural states 
via the unsupervised latent variable estimate (that is, α). f, Comparison of α and θ. The origin and direction around the ring for the measured head angle 
and for unsupervised decoding, both arbitrary choices, are matched to facilitate comparison, only after unsupervised decoding is complete. g, Histogram 
of differences between α and θ and between α and ̂θ. h, Fully unsupervised tuning-curve estimate (blue) versus supervised tuning-curve estimate (black). 
Unsupervised tuning curves capture 71 ± 2.8% of the variance of tuning curves constructed using the traditional, supervised way (Supplementary Fig. 6). 
i, Left: fraction of variance explained by θ (left) and α (right) under a Poisson-spiking model. Means are shown in orange. Significance is calculated from 
two-sided binomial tests. Right: as in the left panel, but using an overdispersed model. P values left to right: P < 10−4, P = 0.11, P < 10−4, P = 0.047, P = 0.11 
and P = 0.017 (*P < 0.05, ***P < 10−3). n = 37, 10 and 22 cells from mouse 12, mouse 25 and mouse 28, respectively. j, Manifold from data (blue) and from 
an overdispersed spiking model (red), with overdispersion (Fano factor) estimated from the data and applied as uncorrelated across neurons. The inset 
shows the distribution of distances from the manifold fit for data and model. k, Covariance of firing rates (left) and covariance conditioned on either θ 
(center) or α (right). The covariance matrix is only 6% of the raw covariance matrix when conditioning on α, which suggests that α captures ~94% of data 
covariance; the ratio after conditioning on θ is 25%. All panels show data from mouse 28, session 140313.
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method to enhance the SNR of persistent homology in very noisy 
data) that is essentially identical to the ring during awake exploration 
(Fig. 3c; see Supplementary Fig. 7 for data for other animals). Thus, 
the ring manifold is internally generated and autonomous (property 3)  
to the brain, which is consistent with a conclusion inferred from 
preserved pairwise correlations during sleep21. However, we cannot 
determine whether the internal dynamics are confined to the anterior 
thalamus or dependent on longer-range interactions between areas.

Manifold states are equivalent. To test the equivalence of mani-
fold states, we examined the occupancy and dynamics during REM 
sleep, when state occupancy is not biased by behavior and the exter-
nal world. First, we plotted instantaneous velocity vectors linking 
states at adjacent timepoints. If the manifold contained a number of 
discrete fixed points, there would be fast flow to and high occupancy 
around those fixed points. These flows would correspond visually to 
long bars converging near those points, unlike the roughly uniform 
bars observed (Fig. 3d).

Relatedly, the angular change is independent of the angle value 
itself (Fig. 3e; see Supplementary Fig. 8 for data for other animals). 
To gain statistical power from pooling across sessions for each ani-
mal, we decoded the angular states on the ring with a supervised 

decoder and computed the density of the decoded angles (Fig. 3f). 
The logarithm of the density of states along the ring—an estimate 
of the relative energy of states—was flat on the scale of variability 
across sessions. These results directly support property 5.

Finally, we studied circuit dynamics by examining fluxes of 
states on and off the manifold. A high-dimensional state space and 
manifold perspective is critical to this analysis, which cannot be 
done on the level of single-cell tuning. The flux through a small 
region is the average over all trajectories that flow into and out of 
that region (Fig. 3g). For a continuous attractor that is not driven 
by directional input, we expect roughly zero net fluxes along the 
manifold because of the isotropic distribution of flow directions 
along the manifold (property 5) and the omnidirectional nature of 
random kicks off manifold. However, states not on the manifold 
should exhibit large net fluxes because of biased flows returning to 
the manifold (property 4; Fig. 3h). Indeed, net fluxes were larger 
at off-manifold states (Fig. 3g–i), with an increase in both radial 
(that is, toward the ring) and tangential (that is, along the ring) 
components (Fig. 3i). These off-manifold fluxes were directed pref-
erentially toward the ring, even during spontaneous activity, thus 
showing that population states are attracted toward the manifold, 
as predicted by attractor models.
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Fig. 3 | REM sleep states, fluxes and dynamics suggest that the manifold is internally generated and attractive. a, Schematic of attractor model 
predictions (see main text for list). b, Betti 1 barcode reveals a 1D ring structure preserved during REM sleep. c, Joint visualization of REM (green) and 
waking data (dark blue) using Isomap43. d, Flows along the REM manifold, with each bar representing a velocity vector at a moment in time. The inset 
shows the wake manifold. e, Single session mean and standard deviation of change in the decoded angle as a function of angle (14,679 time points).  
f, Mean and standard deviation of angle occupancy (from the tuning-curve decoder) across ten sessions. g, Flux on and off the manifold. The inset shows 
the distribution of normalized dot product (upper) and angles (lower) between flux vectors and the vector pointing toward the closest point on the 
manifold (that is, radial direction; see schematic at bottom of panel i). h, Schematic showing that flux should be small on the manifold because velocity 
vectors tend to point in both directions along the manifold and thus average out (upper panel), while flux off the manifold should be large because velocity 
vectors tend to drive the system back to the manifold (lower panel). i, Flux is larger off the manifold. Upper: each pair contrasts the distribution of fluxes 
on versus off the manifold for the total flux vector (left) and its radial (center) and tangential component (right). n = 814 flux vectors for each condition 
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Filled violin plots show data (bootstrapped distribution of the ratio of the means of the distributions in the upper panel), while shaded plots show shuffled 
controls. A total of 1,000 samples were analyzed for each distribution. In all violin plots, black lines show the minimum, median and maximum values, 
and red lines show the means. The existence of non-negligible tangential fluxes at off-manifold states suggests that relaxations back to the manifold may 
not always take the shortest path toward the manifold. Such trajectories might reflect more complex dynamics than in the simplest attractor models, an 
avenue for future study. All panels show data from mouse 25, session 140130.
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Diffusive dynamics along the manifold during REM. We next 
combined theoretical predictions about dynamical trajectories on 
continuous attractor manifolds26 with SPUD decoding (Fig. 4a,b) 
to gain a quantitative estimate of the nature and influence of noise 
on the circuit. Noise is an important consideration for integrator, 
memory and representational circuits because it determines the 
timescale and fidelity of information stored in the circuit.

First, we used waking data to confirm that SPUD captured the 
fine-time-scale statistics of trajectories (Fig.4c, left inset). Since HD 
updates are correlated over short times during waking (Fig. 4d, blue 
trace; Supplementary Video 3), the squared deflection in estimated 
angle—if the SPUD estimate is sufficiently time-resolved—should 
grow quadratically at short times, which is what we found.

By contrast, during REM sleep, estimated angle updates were tem-
porally uncorrelated but local (Fig. 4d, green trace; Supplementary 
Video 4). The squared angular deflection grew linearly with time 
(Fig. 4c, green curve). Temporally uncorrelated local updates and a 
linear growth in squared deflection are characteristic of an unbiased 
diffusive random walk26, which is consistent with property 5.

Evidence of input aligned to the manifold. To resolve the nature 
of the noise driving diffusivity during REM, we made, to our 
knowledge, the first quantitative comparison between empiri-
cally observed diffusion in a neural circuit and theoretical predic-
tions. The diffusion constant of REM dynamics shown in Fig. 4c is 
1.1 ± 0.04 rad2 s–1 (0.52 ± 0.03 and 1.3 ± 0.06 for the other two ani-
mals; see Supplementary Fig. 9). This diffusivity exceeded, by 20–50 
times, the predicted value in a matched neural network model26 
(Fig. 4c; Supplementary Note 4.2; Supplementary Fig. 10), if noise is 
independent across neurons.

Independent per-neuron noise could arise from Poisson-like 
spike count variations within the circuit or from high-dimensional 
input that projects in a spatially uncorrelated way to the neu-
rons. In either case, high-dimensional noise is largely impotent in 
pushing the network state along the manifold because each unit 
variance of high-dimensional noise has a variance of only 1/N 
along the manifold4,26,27 (Fig. 4e; N is the number of neurons in 
the circuit; over-dispersed noise does not resolve the problem, see 
Supplementary Note 4.2).

By contrast, a modest amount of low-dimensional noise aligned 
to the nonlinear manifold (standard deviation of 8.5 rad2 s–1 with 
temporal correlations of 20 ms or less, which is comparable to the 
head-velocity drive during waking to update the HD estimate, 
Supplementary Fig. 5) has a much stronger effect26,27, thus account-
ing for the measured diffusion (Fig. 4c). In contrast to high-dimen-
sional noise, such manifold-aligned noise tends not to distort the 
activity states, but keeps them close to the manifold as seen in the 
REM data. These results suggest that the network receives an input 
that is aligned to the manifold and is of the right amplitude for 
moving the state around the ring in response to waking head move-
ments, thus supporting property 6.

Furthermore, the results demonstrate that even in cognitive cir-
cuits for memory and integration, as established for low-level sen-
sory circuits and sensorimotor pathways28,29, information fidelity is 
primarily limited by input noise or sensory imprecision rather than 
by internal noise.

Higher-dimensional manifold and coherent dynamics in 
nREM sleep. Hippocampal circuits replay waking activity pat-
terns during nREM sleep30,31, and replays might be important for 
memory consolidation25,32. However, the HD circuit seems to lack 
replays or even coherent temporal dynamics during nREM when 
probed using conventional decoding approaches21,33. nREM sleep 
is also described as disrupting the ability of the brain to maintain 
integrated representations34, but it is unclear what this disruption 
means at a more mechanistic level, thus presenting an opportunity  

to understand it in the context of a specific integrated representa-
tion like HD.

We therefore examined manifold structure and dynamics 
in the ADn during nREM sleep. We found that the manifold is  
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constant for the decoded angle (5,000 samples; center line, median; box 
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values in the right inset show the diffusion constant for the continuous 
attractor model without noisy velocity input and the continuous attractor 
model with noisy velocity input. d, Autocorrelation of angular velocity.  
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higher-dimensional (Fig. 5a,b; Supplementary Video 5; Supple 
mentary Fig. 11), forming a conical surface (Fig. 5b and 
Supplementary Fig. 11, where the cone is clearer). The manifold 
only partially overlapped the waking/REM manifold (Fig. 5b), 
which caps the circular rim of the nREM cone.

The nREM manifold encodes at least two latent variables, which 
we decoded along the tangential (circular) and radial (distance 
along spokes emanating from the manifold centroid) dimensions of 
the manifold using SPUD. The LVE along the tangential direction 
represents an angular variable, which closely matched (except at 
low-activity states where the SNR of the neural response is low) the 
estimates of two wake-trained supervised decoders of head angle 
that make different assumptions (Supplementary Figs. 12 and 13). 
This result means that the angular structure of the manifold still 
represents the HD variable.

The radial LVE encodes population firing rate, capturing the 
slow, global fluctuations that characterize nREM sleep35 (Fig. 5c). 
Unlike in waking and REM, where we inferred that some discrete 
attractor state in the total drive to the ADn (which will be interest-
ing to identify in future experiments) keeps the manifold radius 
invariant across divergent behavioral states, this discrete attractor 
appeared to be lost during nREM, so that the network receives 
an overall drive of slowly varying amplitude. The highest drive 
during nREM matched wake and REM, but reduced drive caused 
the system to visit angle coding states or rings of varying ampli-
tude, down to nearly the zero activity state close to the manifold 
centroid or cone tip. The nREM responses were well modeled by 
the same attractor circuit as for waking and REM dynamics, but 
with the global external input to all neurons undergoing large 
suppressive amplitude fluctuations of multiplicative amplitude 
≤1 (Supplementary Fig. 14).

Dynamics on the higher-dimensional nREM manifold are of 
two distinct types (Fig. 5d): local diffusive evolution in a confined 
region of the manifold and larger coherent sweeps (see Methods and 
Supplementary Video 6 for more detail on the properties of these 
two types of trajectories). This result is in contrast to the largely 

(rapidly) diffusive dynamics identified in nREM by wake-trained 
supervised decoders21,36,37 (Supplementary Fig. 12d–f), which effec-
tively project the higher-dimensional manifold states onto the 1D 
waking ring before estimating temporal dynamics.

The large sweeps are coherent in magnitude (Fig. 5e) and in 
direction so that motion in a direction tends to continue in that 
direction (Fig. 5f, inset), thus producing a quadratic (rather than 
linear diffusive) growth in squared displacement over time (Fig. 5f, 
dark curve) as seen during waking (Fig. 4c, blue curve); however, 
the inferred speed of nREM coherent trajectories is eight times the 
speed of waking trajectories.

To reproduce sweeps in the attractor circuit model requires 
not only slowly modulating the strength of global inputs to gen-
erate matched population firing rate fluctuations but also adding 
temporally correlated fluctuations (correlation time of 200 ms) 
projected through the low-dimensional velocity input to the circuit 
(Supplementary Fig. 14).

The sweeps occur during transient increases in local field 
potential (LFP) amplitude in the ADn (Fig. 5g), specifically during 
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Fig. 5 | Higher-dimensional states and coherent dynamics during nREM 
sleep. a, Absence of a persistent ring in the Betti 1 barcode during nREM 
sleep (that is, there is no long horizontal line; compare Figs. 2 and 3b).  
b, Joint plot of nREM and waking manifolds using Isomap. nREM points are 
shown in mustard yellow, while waking points are shown for comparison in 
dark blue (as before). The inset shows alternative views. c, Population firing 
rate during nREM decoded from the distance to the centroid (actual in  
light blue, decoded in yellow). The inset shows points colored by the  
population firing rate. d, nREM manifold with three sample trajectories.  
e, Autocorrelation of velocity on the full manifold. Waking, REM traces from 
Fig. 4d shown for comparison. The timescale over which each type of nREM 
trajectory persists before switching between types (300 ms) is longer 
than timescales present in waking (96 ms, blue trace) and REM dynamics 
(38 ms, green trace), producing the fat tails in the temporal autocorrelation. 
The inset shows the fraction of time spent in consecutive low-velocity and 
high-velocity epochs (300 ms of duration each). Box plots show shuffled 
control (1,000 shuffled samples; center line, median; box limits, upper and 
lower quartiles; whiskers, data range). ***P < 10−3, two-sided permutation 
test. f, Squared change in position on the full manifold for low-velocity and 
high-velocity epochs. Quadratic and linear fits are shown by broken  
lines. The inset shows the distribution of angles between successive high 
(dark) and low (light) velocities on full manifold (100-ms separation). High-
velocity epochs are coherent, producing initial quadratic behavior.  
g, Average LFP trace conditioned on small (black) versus large (gray) 
change in position, along with 95% confidence intervals (n = 7,450 samples 
across time). h, Correlation of the total change in position against LFP power 
in 1-s bins, along with 95% confidence intervals (n = 500 bootstrapped 
samples). All panels show data from mouse 28, session 140313.
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upward fluctuations in LFP power in the ~ 12 Hz band, within the 
7–15 Hz range for sleep spindles35 (Fig. 5h), which in turn are cor-
related with the occurrence of hippocampal sharp waves38.

To summarize, while nREM dynamics projected to the waking 
manifold show misleadingly little temporal structure, the dynamics  
on the nREM manifold switch between a diffusive low-velocity 
regime and a coherent high-velocity regime. Coherent sweeps are 
temporally coincident with LFP power in the spindle band and thus 
with hippocampal sharp waves. Moreover, in continuous attractor 
models of the circuit, sweeps must be driven by temporally coherent 
velocity inputs to the circuit. These observations suggest that there 
are possible connections with replay and memory consolidation 
events elsewhere in the brain25,30–32.

Discussion
We obtained a direct glimpse of a clear 1D ring in the activity states 
of the vertebrate HD circuit, in which neurons may or may not be 
physically laid out in order of their activity profiles. This visualiza-
tion provides a compelling mammalian parallel to the beautiful 
recent results on a topographically ordered HD ring in the inver-
tebrate nervous system13. In addition, a purely 1D structure in the 
state-space manifold would directly imply that the circuit encodes 
no other information beyond HD, while a physical ring layout of 
a HD circuit does not rule out the possibility of additional coding 
dimensions.

A manifold approach reveals the full N-point correlations of 
the circuit, directly uncovering a structure that cannot easily be 
obtained from individual neural responses and pairwise correla-
tions, including that there is little structure beyond a single 1D ring 
(down to some noise threshold) in waking and REM sleep. It shows 
that a presumed discrete attractor holds the circuit’s response ampli-
tude fixed across waking and REM, and the constraint of this dis-
crete attractor on response amplitude is lifted in nREM. Thus, our 
results augment an elegant body of work that inferred intrinsic low-
dimensional structure from pairwise correlations in the vertebrate 
circuits for HD9,11,19–21, oculomotor control3, prefrontal evidence 
accumulation39 and 2D spatial navigation36,37,40.

By examining dynamics on and off the manifold across waking 
and sleep, we showed that the manifold is generated autonomously 
in the brain and that population dynamics are attractive. In par-
ticular, attractive flows onto the manifold from perturbed states are 
evident at the manifold level, but would be hard to observe from a 
few neurons at a time. Finally, a manifold approach allows for com-
parison with theoretical models, whose key predictions are at the 
level of structured population dynamics.

Unlike many applications of manifold methods7,8, the animal 
was not constrained to a specific low-dimensional task or trajectory 
whose dimensionality determined the manifold dimension. Rather, 
the manifold during waking behavior (which included variations in 
location, linear speed, angular speed and orientation, for a mini-
mum of five dimensions of variation) was of much lower dimension 
than the behavior. Moreover the manifold retained the low-dimen-
sional structure during sleep states, which are not constrained by 
low-dimensional inputs from the world, and when the circuit likely 
receives high-dimensional fluctuations. Thus, these analyses have 
uncovered the intrinsic dimension of the manifold.

With the demonstration of a purely 1D representation in a neural 
circuit (down to the noise floor), we are now free to wonder, without 
the usual caveat that these neurons might also be representing other 
things, why the brain uses thousands of cells for this purpose.

The manifold approach could be particularly useful for discov-
ering unknown variables encoded in high-level brain areas and 
examining how structured states and dynamics emerge in neural 
circuits41, including through development42, plasticity or learning. 
Unlike supervised decoding methods25, we did not force an inter-
pretation of a new ensemble of states (for example, during a different  

behavioral or brain state or task) by regression onto a previously 
characterized library of states. Manifold characterization with 
topological data analysis followed by parameterization in local 
coordinates as done here rather than by global low-dimensional 
embedding (as done by, for example, PCA and Isomap43) will be 
important for unsupervised decoding of higher-dimensional mani-
folds that are topologically nontrivial, for example, toroidal struc-
tures produced by simulated grid cells (Supplementary Note 3; we 
found that ~35 grid cells can be sufficient to reveal 2D toroidal 
structure, Supplementary Fig. 3).

Persistent homology has been used to analyze neural data in var-
ious contexts44–47, including to recover the topology of the physical 
environment explored by an animal from place cell activity45, and 
to determine the topology of neural activity space46 or of unknown 
covariates47, but not, until now and in a contemporaneous work48, as 
part of a procedure for decoding latent variables.

Our innovation is to parameterize the manifold with splines 
of matching topology and to use this parameterization to decode 
the represented latent variable, characterize on- and off-manifold 
dynamics in waking and sleep, and to test theoretical models. By 
contrast, Rybakken et al.48 performed blind decoding using a variant 
of persistent homology called persistent cohomology, which pro-
vides a mapping between a Betti 1 feature and a circle, and applied 
an interesting iterative procedure to find additional coding dimen-
sions (likely reflecting non-thalamic cells excluded from our pres-
ent analysis and in which we also find additional structure (R.C., 
B.G., B.P., A.P. and I.F., unpublished observations)). Together, these 
studies illustrate the broader idea of unsupervised decoding from 
topologically nontrivial population manifolds.

Persistent homology has several limitations. One is the high 
sensitivity to outliers, for which we proposed a density-threshold 
method (Supplementary Note 2.3) that ameliorates this problem. 
Second, computing persistent features can be computationally slow. 
Finally, persistent homology cannot distinguish between topo-
logically trivial manifolds with different geometries (for example, 
a hyperplane versus a filled ball). In general, persistent homology 
should be used as an initial step in a workflow to detect or rule 
out nontrivial topological features, followed by use of a manifold 
parameterization method to suit the topology (see Supplementary 
Note 1) and geometry.

In summary, manifold-level analyses can enable fully unsuper-
vised discovery and decoding of brain states and dynamics, and 
quantification of collective dynamics on and off the manifold can 
give insight into circuit mechanisms. We believe that a manifold 
perspective and related techniques41,48–50 will be essential for extract-
ing information from large datasets and during cognitively interest-
ing tasks in which the brain constructs rich latent variables, thus 
representing the future of neural decoding.
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Methods
Data. We analyzed data from a previous experiment21. All experiments were 
approved by the Institutional Animal Care and Use Committee of New York 
University Medical Center. Briefly, the dataset contains recordings from the ADn 
of seven C57BL/6 mice (five male, two female), aged between 3 and 6 months, 
that were awake and foraging in an open environment along variable paths 
with variable velocities, as well as during intervening REM and nREM periods, 
along with measured head angles21. For some of the mice, the data also contain 
recordings from the postsubiculum. Including data from the postsubiculum allows 
for slightly better manifold decoding of waking HD in some animals. However, this 
is a separate brain area with a different manifold structure, so we leave those data 
for a separate study.

We show manifolds (across waking, REM and nREM states) and wake 
decoding results from all seven mice. We show further analyses of waking 
dynamics and waking and REM decoding results from the three mice with waking 
root-mean-square decoding error of <0.5 rad and nREM decoding results from 
two out of these mice (the manifold for the third mouse was confined to very 
low activity states; Supplementary Fig. 11). Sessions that allowed good decoding 
contained 9–50 neurons, and the number of neurons that showed good HD tuning 
ranged from 8 to 30.

Preprocessing. We first converted spike times into time-varying rates. For analyses 
except persistent homology, we estimated firing rates by convolving the spike times 
with a Gaussian kernel of standard deviation 100 ms (50 ms for the plots in Fig. 5f). 
For the persistent homology analyses, we computed total spike counts in 1-s bins. 
In all cases, we then replaced the rates by their square root to stabilize the variance.

Before fitting the manifold or applying topological methods, we used Isomap43 
to reduce the large (N-dimensional) ambient dimension by re-embedding the data 
into a smaller, but still relatively high-dimensional, embedding space of dimension 
De ( ≪ ≪D D Nm e , where Dm is the intrinsic manifold dimension). We set the 
number of neighbors to be 5 (higher values also work well) and embedded into 
3–20 dimensions (3 for visualization and before decoding; 10 before applying the 
topological methods below; a range between 3 and 20 for Supplementary Fig. 4). 
For the joint visualizations of data across states (Figs. 3c and 5d), we concatenated 
equal amounts of data from the two states and ran Isomap on these combined data.

This preliminary embedding ironed out some of the convolutions in the 
manifold while preserving its topology and, most importantly, sped up spline 
fitting. However, the results for decoding are not sensitive to the choice of 
embedding dimension. Indeed, for two of the three animals for which good 
decoding was possible, fitting directly in the high-dimensional space yielded a 
slightly more accurate fit, although the fitting procedure occasionally failed in high 
dimensions (Supplementary Fig. 4).

Persistent homology. To compute Betti barcodes for the data, we first applied 
Isomap to reduce it to ten dimensions (or used the full-dimensional state space if 
the number of neurons was fewer than ten). We then used the package Ripser51 to 
generate the Betti 0, 1 and 2 barcodes. For the nt-TDA analysis, we first excluded 
outliers by considering a neighborhood around each point with the radius defined 
by the first percentile of the pairwise distance distribution, and then removing 
all points whose numbers of neighbors lay in the bottom 20th percentile of the 
distribution of number of neighbors across points (Supplementary Note 2.3).

We plotted features above the 98th, 97th and 30th percentiles of Betti 0, 1 and 
2 length distributions, respectively, for Fig. 2. For Fig. 3, the thresholds were 99th, 
98th and 90th percentiles, respectively. For Fig. 5, the thresholds were 99.85th, 
99.85th and 98th percentiles, respectively. For Supplementary Figs. 1c,d, 7b,c 
and 11b,c, the thresholds were common across mice and reported in the figure 
captions. Note that there are a large number of very short-lived features, and no 
results were sensitive to the threshold for displaying the Betti features.

Spline fit, parameterization and decoding. We fit the manifolds using piecewise 
linear curves. A curve L(y) is specified by K knots, with locations {y1 ⋯ yK}. The 
knots are ordered, and the ith segment of the curve is a straight line between the 
ith and i +  th knot. Given data points xi and a number of knots K, we first used 
k-means to identify K clusters in the data and set the centers of these clusters to 
be the initial knot locations. We then iteratively updated these knot locations 
to minimize ∑ ∣∣ − ∣∣ ∣ ∣( )x L y L y( ) ( )i i , where ||xi − L(y)|| is the Euclidean distance 
between the ith data point and the nearest point on the curve L(y), and |L(y)| is the 
length of the curve. The multiplication by |L(y)| acts as a regularizer that penalizes 
excessively long or convoluted curves. The improvement from regularization is 
mild. An alternative cost function of the form λ∑ ∣∣ − ∣∣ + ∣ ∣( )x L y L y( ) ( )i i  (where λ 
controls the degree of additive regularization) also worked well.

We parameterized points on the manifold by distance along the curve (in 
embedding space) from some arbitrary origin, with distances rescaled between 
0 and 2π for comparison to the actual head angle. We primarily used K = 12 and 
embedding dimension De = 3 (see Supplementary Fig. 4 for other values). Points 
were decoded by mapping them to the nearest point on the manifold, based on the 
Euclidean norm in the embedding space, and reading off the parameter value there.

In the waking state, we shifted the global origin and chose the orientation 
around the curve to match the measured head angle, but made no other 

modifications (for example, we did not rescale the coordinate differently in 
different parts of the ring). During sleep, when comparing to a tuning curve 
decoder, we performed a similar shift and choice of orientation dictated by the 
tuning-curve decoded angle.

Supervised tuning-curve decoder. We computed the supervised tuning curve of 
the ith cell, fi(θ), as its mean response to the measured head angle for each of the 30 
angular bins as follows:

θ
θ

θ
= .f

i
( )

Number of spikes fired by cell around angle
Time spent by animal around anglei

We then decoded the head angle using maximum likelihood estimation under 
the model that at angle θ, neuron i responds independently with Ci spikes drawn 
from a Poisson distribution with rate fi(θ) as follows:

∏θ θ θ̂ = ∣ = Δ
θ θ

= ⋯
=

P C C f targmax ({ } ) argmax Poiss( ; ( ) )t it i N
i

N

it i1, ,
1

Variance explained and excluding other encoded variables. To compute the 
variance explained, we considered the spike counts extracted in 100-ms bins. If the 
spike counts of the ith neuron are Ci, then the variance explained by X is as follows:

E E Eϕ= ∣ + ∣C X C XVar Var[ ( )] [ ( )] (1)X i iexp,

Here, X is the measured head angle or decoded head angles (binned in 30 bins 
between 0 and 2π). For the Poisson model, ϕ = 1. For the overdispersed model, we 
estimated ϕ as E∣ ∕ ∣C X C Xmin Var( ) ( )X i i . For a true overdispersed process, taking 
the minimum is likely to underestimate the overdispersion; thus this estimate is 
conservative.

Throughout (except for the measured head angle), we used a training set 
(80% of the data) to fit the manifold or to construct tuning curves, and a test 
set (remaining 20% of the data) to evaluate the model. As shown in Fig. 2i, we 
evaluated significance by computing the number of cells that were better explained 
by the unsupervised LVE than by the measured angle and comparing this to a  
null model in which both explained the data equally well (that is, two-sided 
binomial test).

For Fig. 2j, we generated synthetic data using the tuning curves to the 
unsupervised LVE. Given a decoded latent variable α, we generated a spike count 
for neuron i from a normal distribution with mean E α∣C( )i  and variance Var(Ci|α). 
Generating counts this way assumes that neural firing is overdispersed, but that 
neurons are independent given α, thus explicitly removing additional structure 
in the population. To compare the covariance explained (Fig. 2k), we compared 
the ratio of the Frobenius norm of the residual covariance matrix (that is, after 
conditioning on either the measured or the SPUD angle) to the norm of the raw 
covariance matrix.

Diffusion curves. The diffusion curve at time shift τ is D(τ) = 〈α(t + τ) − α(t)〉t, 
where the average value is taken over time (that is, all pairs of time points separated 
by τ). To compute diffusion constants, we fitted a straight line to the first 200 ms 
of the squared change in decoded angle against time. To obtain a bootstrapped 
estimate of error, we resampled 200-ms epochs from the data with replacement 
(number of samples chosen to match the length of data) and recomputed the 
diffusion constant. We repeated this resampling procedure 1,000 times.

Fluxes. To estimate the flow fields (Fig. 3g), we considered a 2D Isomap embedding  
of the manifold and averaged together velocity vectors of points in each of the 900 
spatial bins (30 equal bins per dimension).

For the distributions shown in Fig. 3g, inset, and Fig. 3i, we carried out the 
same analysis in 3D (to limit distortions from the low-dimensional embedding) 
using 20 bins per dimension. We defined a radial vector from the center of each 
bin to the nearest point on the manifold and projected onto this vector to construct 
radial and tangential flux components. For Fig. 3i, upper panel, we rescaled the 
tangential components by ∕1 2 to reflect that there are two tangential dimensions 
and only one radial dimension (the ratio plots in the lower panel of Fig. 3i and the 
significance tests are unaffected by this rescaling).

To quantify the difference between on- and off-manifold points (Fig. 3i), we 
divided the bins into on- and off-manifold bins based on the 50th percentile of 
the distance to the fitted spline, and show respective flux distributions. We then 
compared the ratio of the average norm of the velocity vector on and off the 
manifold along with the equivalents for the radial and tangential components. 
The distributions of these ratios were computed by resampling the data with 
replacement 1,000 times.

To test for significance, we shuffled the assignment of velocity vectors to points, 
repeated the spatial binning and averaging, and recomputed the ratios (1,000 times).  
We then computed a P value by calculating the probability of getting a value as 
or more extreme than the observed data under the null distribution (two-sided 
permutation test).
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nREM dynamics. For the SPUD-based firing rate decoding shown in Fig. 5c, we 
computed the distance of points on the nREM manifold to the manifold centroid, 
and plotted the best linear predictor of population firing rate as a function of this 
distance.

To classify trajectories on the full manifold as sweeps, we looked for 300-ms 
epochs (here, six 50-ms time bins; results were similar for three 100-ms time bins) 
when the speed is above the 60th percentile of the speed distribution. For confined 
trajectories, we did the same but extracted trajectories that remained below 
the 40th percentile of speed. To compute a null distribution for the fraction of 
times during which the circuit is in a sweep or confined trajectory, we repeatedly 
shuffled the velocities over time (1,000 times) and recomputed the fractions. 
We computed the significance from these null distributions using a two-sided 
permutation test.

We estimated LFP at a shank as the median of the LFP recorded on each 
channel, and then averaged these estimates across shanks (results were similar 
across shanks). For Fig. 5g, we considered changes in the nREM manifold 
position over 200 ms, and plotted the mean LFP for the 5 s before and after a 
large (>50th percentile) or small (<50th percentile) change, along with a 95% 
confidence interval computed as 1.96 times the standard deviation across time 
samples. For Fig. 5h, we converted the LFP to a spectrogram using a sliding 
Fourier transform, calculated the total power at each frequency in 1-s windows 
and correlated this with the summed absolute change in manifold position over 
ten 100-ms bins (that is, ∑ ∥ + . × − + . × − ∥= x t i x t i( 0 1 ) ( 0 1 ( 1))i 1

10
0 0 , where t0 is the 

time at which the signals are being compared). We plotted these correlations 
along with a 95% bootstrapped confidence interval, where we repeatedly 
resampled the LFP–change in manifold position pairs and recomputed the 
correlation (1,000 times).

Attractor model. We used a slightly modified version of the continuous attractor 
model from a previous study26 and reproduced the waking, REM and nREM data 

by only changing the inputs to the model. Further details on model construction 
are provided in Supplementary Note 4 and in Supplementary Figs. 10 and 14.

Statistics. No statistical methods were used to predetermine sample sizes. We 
analyzed data from all animals reported in a previous publication21, and the 
number of animals and recorded cells were similar to previous studies33,52. There 
was no randomization or division into experimental groups. Data collection and 
analyses were not performed blinded to the conditions of the experiments. For 
significance, nonparametric permutation tests or binomial tests were used. All 
statistical tests used were two-sided, and data distributions were not assumed to be 
normal. Correlations are reported using Pearson’s correlation coefficient. Further 
details are available in the Nature Research Reporting Summary.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data have been previously reported21 and are available on the CRCNS website at 
http://crcns.org/data-sets/thalamus/th-1.

Code availability
The code is available at https://fietelab.mit.edu/code/.
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